{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# How NOT to write pandas code\n", "\n", "To Step Up Your Pandas Game, read: \n", "- [5 lesser-known pandas tricks](https://towardsdatascience.com/5-lesser-known-pandas-tricks-e8ab1dd21431)\n", "- [Exploratory Data Analysis with pandas](https://towardsdatascience.com/exploratory-data-analysis-with-pandas-508a5e8a5964)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from platform import python_version\n", "\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42) # set the seed to make examples repeatable" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "python version==3.7.3\n", "pandas==0.25.3\n", "numpy==1.17.4\n" ] } ], "source": [ "print(\"python version==%s\" % python_version())\n", "print(\"pandas==%s\" % pd.__version__)\n", "print(\"numpy==%s\" % np.__version__)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | id | \n", "city | \n", "booked_perc | \n", "
---|---|---|---|
0 | \n", "0-berlin | \n", "berlin | \n", "0.393636 | \n", "
1 | \n", "1-new york | \n", "new york | \n", "0.473436 | \n", "
2 | \n", "2-paris | \n", "paris | \n", "0.854547 | \n", "
3 | \n", "3-berlin | \n", "berlin | \n", "0.340004 | \n", "
4 | \n", "4-berlin | \n", "berlin | \n", "0.869650 | \n", "